Binary choice models with discrete regressors: Identification and misspecification
نویسندگان
چکیده
منابع مشابه
Binary Choice Models with Discrete Regressors: Identification and Misspecification
In semiparametric binary response models, support conditions on the regressors are required to guarantee point identification of the parameter of interest. For example, one regressor is usually assumed to have continuous support conditional on the other regressors. In some instances, such conditions have precluded the use of these models; in others, practitioners have failed to consider whether...
متن کاملMisspecification and Heterogeneity in Binary Choice Models
We address function misspecification and model heterogeneity, two critical issues in empirical work. A nonparametric approach is proposed for single-index, binary-choice models when parametric models such as Probit and Logit are potentially misspecified. The new approach involves two steps: first, we estimate index coefficients using sliced inverse regression without knowing the conditional pro...
متن کاملA Simple Estimator for Binary Choice Models With Endogenous Regressors
This paper provides a few variants of a simple estimator for binary choice models with endogenous or mismeasured regressors, or with heteroskedastic errors, or with panel fixed effects. Unlike control function methods, which are generally only valid when endogenous regressors are continuous, the estimators proposed here can be used with limited, censored, continuous, or discrete endogenous regr...
متن کاملSimple Estimators for Binary Choice Models With Endogenous Regressors
This paper provides two main contributions to binary choice models with endogenous regressors. First, we propose some variants of special regressor based estimators that are numerically trivial to implement. These estimators provide consistent estimates of binary choice model coef cients when regressors (either discretely or continuously distributed) are endogenous, and when the latent errors h...
متن کاملMisspecification and Heterogeneity in Single-Index, Binary Choice Models
We propose a nonparametric approach for estimating single-index, binarychoice models when parametric models such as Probit and Logit are potentially misspecified. The new approach involves two steps: first, we estimate index coefficients using sliced inverse regression without specifying a parametric probability function a priori; second, we estimate the unknown probability function using kerne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2013
ISSN: 0304-4076
DOI: 10.1016/j.jeconom.2013.05.005